联系我们
    插件电感_大电流电感
热门搜索
点击排行
推荐电感
推荐阅读
推荐电感
推荐电感
猜猜你喜欢的
行业资讯 您所在的位置: 电感 > 行业资讯

自适应滤波算法的仿真及工程实现

来源:    作者:    发布时间:2014-12-23 08:15:55    浏览量:
0 引 言
自适应滤波理论是20世纪50年代末开始发展起来的。它是现代信号处理技术的重要组成部分,对复杂信号的处理具有独特的功能。自适应滤波器在信号处理中属于随机信号处理的范畴。对于随机数字信号的滤波处理,通常有维纳(Weiner)滤波器、卡尔曼(Kal-man)滤波器和自适应(Ad功率电感aptive)滤波器。维纳滤波器的权系数是固定的,适用于平稳随机信号;卡尔曼滤波器的权系数是可变的,适用于非平稳随机信号。但是,只有在对信号共模电感和噪声的统计特性先验已知的情况下,这两种滤波器才能获得最优滤波。但在实际应用中,常无法确定这些统计特性的先验知识,或统计特性是随时间变化的,因此,在许多情况下,维纳滤波器或卡尔曼滤波器实现不了最优滤波,而自适应滤波不要求已知信号和噪声的统计特性,因而可以提供理想的滤波性能。当前,自适应滤波技术已广泛应用于自适应噪声对消、语音编码、自适应网络均衡器、雷达动目标显示、机载雷达杂波抑制、自适应天线旁瓣对消等众多领域。
在一些信号和噪声特性无法预知或它们是随时间变化的情况下,自适应滤波器通过自适应滤波算法调整滤波器系数,使得滤波器的特性随信号和噪声的变化而变化,以达到最优滤波的效果。这里在对自适应滤波算法研究的基础上,给出了不同信噪比情况下,LMS算法的仿真实现及基于DSP的工程实现,并对两种实现方法的结果进行了验证、分析比较。

1 自适应滤波理论
所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动调节现时刻的滤波器参数,以适应信号和噪声未知或随时间变化的统计特性,从而实现最优滤波。自适应滤波器由两个部分组成:一是滤波器的结构;二是调节滤波器系数的自适应算法。自适应滤波器的特点是自动调节自身的冲激响应,达到最优滤波,此算法适用于平稳和非平稳随机信号,并且不要求知道信号和噪声的统计特性。
1.1 自适应滤波器结构
自适应滤波器主要有无限冲激响应(IIR)和有限冲激响应(FIR)两种类型。滤波器结构的选择对算法的处理起着重要的影响;IIR型结构滤波器的传输函数既有零点又有极点,它可以用不高的阶数实现具有陡峭通带特性,缺点是稳定性不好,且相位特性难于控制。FIR滤波器是全零点滤波器,它是稳定的,且能实现线性的相位特性,因此,自适应滤波器的结构通常采用F1R型滤波器的横向结构,结构如图1所示。

式中:n为时间序列;N为滤波器阶数;x(n)=[x(n),x(n-1),…,x(n-N+1)]T为输入矢量;W(n)=[ω0(n),ω1(n),…,ωN-1(n)]T为权系数矢量。

1.2 LMS自适应滤波算法
LMS自适应滤波算法是根据最小均方误差准则进行设计的,LMS算法的目的是通过调整系数,使输出误差序列的均方值最小化,并且根据这个数据来修改权系数。误差序列的均方值ε表示为:

式中:d(n)为理想信号;e(n)为输出误差序列。将式(1)中的y(功率电感器n)代人式(2)中有:

式中:R=E[X(n)XT(n)]为N×N自相关矩阵,表示输入信号采样值间的相关性矩阵。P=E[d(n)X(n)]为N×1互相关矩阵,表示理想信号d(n)与输入信号矢量的相关性。
在均方误差最小时,最佳权系数电感器厂家应满足如下方程:


即:
这是一个线性方程组,如果R矩阵为满秩矩阵,则有R-1存在,可得到电力电感器权系数的最佳值满足:

由式(6)可以知道,求出R和P就可以得到W*。由前几式可知,R是X(n)的自相关矩阵,P是d(n)与 X(n)的互相关矢量。
LMS算法是以最陡下降法为原则的迭代算法,即W(n+1)矢量是W(n)矢量按均方误差性能平面的复斜率大小调节响应一个增量,即:

低功率能量采集技术相助 无线传感器寿命更持久 4月08日 第三届·无线通信技术研讨会 立即报名 12月04日 2015•第二届中国IoT大会 精彩回顾 10月30日ETF•智能硬件开发技术培训会 精彩回顾 10月23日ETF•第三届 消费

基于协议的提高RS485总线实时性的设计方案 0 引言RS 485 总线具有结构简单、成本低廉、通信速率高、传输距离远等诸多优点,因而被广泛应用于工厂自动化、工业控制、安全监控等领域。RS 485一般采用半双工的通信方式,即在整个网络中任一时刻

开关电源的干扰及其抑制        0 引言
  开关电源作为电子设备的供电装置,具有体积小、重量轻、效率高等优点,在数字电路中得到了广泛的应用,然而由于工作在高频开关状态,属于强干扰源,其本身

大电流电感
 
在线客服