ADIADUCM360数据采集系统解决方案
来源: 作者: 发布时间:2015-10-11 07:24:22 浏览量:The device contains an on-chip 32 KHz oscillator and an internal 16电感厂家MHz high-frequency oscillator. This clock is routed through a programmable clock divider from wh扁平线圈电感ich the MCU core clock operating frequency is generated. The maximum core clock speed is 16MHz and this is not limited by operating voltage or temperature.
The microcontroller core is a low power Cortex-M3 core from ARM. It is a 32-bit RISC machine, offering up to 20 MIPS peak performance. The Cortex-M3 MCU incorporates a flexible 11-channel DMA controller supporting all wired (SPI, UART, I2C) communication peripherals. 128k Bytes of non-volatile Flash/EE and 8k Bytes of SRAM are also integrated on-chip.
The Analog sub-system consists of dual ADCs each connected to a flexible input MUX. Both ADCs can operate in fully differential and single ended modes. Other on-chip ADC features include dual programmable excitation current sources, burn-out current sources and a bias voltage generator of AVDD_REG/2 (900mV) to set the common-mode voltage of an input channel. A low-side internal ground switch is provided to allow powering down of a bridge between conversions. The ADCs contain two parallel filters – a Sinc3 or Sinc4 in parallel with a Sinc2. The Sinc3 or Sinc4 filter is for precision measurements. The Sinc2 filter is for fast measurements and for detection of step changes in the input signal The device also contains a low noise, low drift internal band-gap reference or can be configured to accept up to 2 external reference sources in ratiometric measurement configurations. An option to buffer the external reference inputs is also provided on-chip. A single-channel buffered voltage output DAC is also provided on chip. The ADuCM360/ADuCM361 also integrates a range of on-chip peripherals which can be configured under microcontroller software control as required in the application. These peripherals include UART, I2C and dual SPI Serial I/O communication controllers, 19-Pin GPIO Ports, 2 General Purpose Timers, Wake-up Timer and System Watchdog Timer. A 16-bit PWM with six output channels is also provided.
The ADuCM360/ADuCM361 is specifically designed to operate in battery powered applications where low power operation is critical. The microcontroller core can be configured in a normal operating mode consuming 290μA/MHz (including Flash/SRAM Idd) resulting in an overall system current consumption of 1mA when all peripherals are active.
The part can also be configured in a number of low power operating modes under direct program control, including hibernate mode (internal wake-up timer active) consuming only 4μA. In hibernate mode, peripherals such as external interrupts or the internal wake up timer can wake up the device. This allows the part to operate in an ultra-low power operating mode and still respond to asynchronous external or periodic events.
On-chip factory firmware supports in-circuit serial download via a serial wire interface (2-pin JTAG system) and UART while non-intrusive emulation is also supported via the serial wire interface. These features are incorporated into a low-cost QuickStart Development System supporting this Precision Analog Microcontroller family.
The part operates from an external 1.8V to 3.6V voltage supply and is specified over an industrial temperature range of -40℃ to 125℃.
ADuCM360主要特性:
Analog Input/Output
Dual (24-bit) ADCs (ADuCM360)
Single (24-bit) ADC (ADuCM361)
Single Ended and fully Differential inputs
Programmable ADC output rate (4 Hz to 4 kHz)
Simultaneous 50Hz/60Hz rejection
50SPS Continuous Conversion Mode
16.67SPS Single Conversion Mode
Flexible input MUX for input channel selection to both ADCs
Primary and Auxiliary (24-bit) ADC channel
6 differential or 11 Single-Ended input channels
4 internal channels for monitoring DAC, Temperature sensor, IOVDD and AVDD (ADC1 only)
Programmable Gain (1 to 128)
Selectable input range: ±6.64 mV to ±1.2 V
RMS noise: 43nV @3.75Hz, 180nV @ 50Hz
Programmable sensor excitation current sources
10/50/100/150/200/250/300/400/500/600/800uA and 1mA current source options
On-chip precision Voltage reference (±4 ppm/℃)
Single 12-bit voltage output DAC
NPN mode for 4-20mA loop applications
Microcontroller
ARM Cortex™-M3 32-bit processor Serial Wire download and debug Internal Watch crystal for wakeup timer 16 MHz Oscillator with 8-way Programmable Divider Memory 128k Bytes Flash/EE Memory, 8k Bytes SRAM In-circuit debug/download via Serial Wire and UART
Power Operates directly from a 3.0V battery Supply Range: 1.8V to 3.6V (max)
峰值电流型BUCK的MATHCAD计算 这里再给大家介绍一下峰值电流型BUCK的计算,峰值电流型BUCK和电压型BUCK是目前IC采用得比较多的控制方法,当然另外还有
COT(constant on time),OCC(one cycle control)等等..
如何处理高 di/dt 负载瞬态就许多中央处理器 (CPU) 而言,规范要求电源必须能够提供大而快速的充电输出电流,特别是当处理器变换工作模式的时候。例如,在 1V 的系统中,100 A/uS 负载瞬态可能会要求将电源电
基于示波器的电源纹波的测试分析 一、什么叫纹波?
纹波(ripple)的定义是指在直流电压或电流中,叠加在直流稳定量上的交流分量。
它主要有以下害处:
1.1.容易在用电器上产生谐波,而谐波