联系我们
    插件电感_大电流电感
热门搜索
点击排行
推荐电感
推荐阅读
推荐电感
推荐电感
猜猜你喜欢的
动态 您所在的位置: 电感 > 动态

基于短时能量和短时过零率的VAD算法及其FPGA实现

来源:    作者:    发布时间:2014-12-15 12:00:55    浏览量:
语音激活检测VAD(Voice Activity Detection)是一种通过特定的判决准则判断语音中出现的停顿和静默间隔,检测出有效语音部分的技术。运用这种技术可以在确保语音质量的前提下,对不同类别的语音段采用不同的比特数进行编码,从而降低语音的编码速率。由于在双工移动通信系统中,一方只有35%的时间处于激活状态[1],如何降低静音期的编码速率对于减少传输带宽、功率以及容量具有积极的作用,因此VAD技术在语音通信领域具有重要的使用价值。随着适合于变比特率语音编码的CDMA和PRMA等多址技术的出现,应用于蜂窝的语音激活检测的重要性也随之提高[2]

  由于语音通信的特殊性,要求检测过程能达到实时性的要求。而目前主流DSP芯片的并行度并不高,因此在实时处理的要求下,smd电感器保证语音质量和降低塑封电感器语音的编码速率两者难以兼顾。而现场可编程门阵列(FPGA)由于其硬件具有可编程的灵活性,可以实现较高的并行度,从而可以在满足实时性要求的前提下,很好地保证语音质量并降低语音的编码速率。


1算法及检测流程

1.1 算法简述

  语音激活检测算法可以基于时域或频域。本文采用的算法是时域分析的方法。算法对于输入信号的检测过程可分为短时能量检测和短时过零率检测两个部分。算法以短时能量检测为主,短时过零率检测为辅。根据语音的统计特性,可以把语音段分为清音、浊音以及静音(包括背景噪声)三种。在本算法中,短时能量检测可以较好地区分出浊音和静音。对于清音,由于其能量较小,在短时能量检测中会因为低于能量门限而被误判为静音;短时过零率则可以从语音中区分出静音和清音。将两种检测结合起来,就可以检测出语音段(清音和浊音)及静音段。

1.2 检测流程


  检测流程:对输入信号先进行高通滤波,减弱以噪声为主的信号能量。接着进行窗长为80个数据的加窗处理,然后计算该帧的平均能量,再利用短时能量进行VAD初判。若平均能量大于门限则判为语音帧,若平均能量小于门限则判为静音帧。对于初判为静音帧的帧再进行VAD平滑,即参考前三帧的情况:如果前三帧中至少包含一帧非平滑过的语音帧,则将该帧平滑为语音帧,同时记录下该帧为平滑所得的语音帧;反之,则判断为静音帧。如果平滑结果仍为静音帧,且当前帧的过零率介于30~70之间时,则改判为语音帧;反之则仍判为静音帧[3]。VAD算法的检测流程图如图1所示。


  此外,由于人耳的听觉具有掩蔽效应,因此有必要对短时能量一体成型电感门限进行更新[3]。本算法所采用的门限更新方式是:如果连续检测到三帧语音,为了更好地检测到静音,将短时能量门限提高3dB,但如果提高后的门限超过当前帧的平均能量减12dB,则不提高门限;如果连续检测到三帧静音,为了更好地检测到语音,将短时能量门限降低3dB,但如果降低后的门限小于当前帧的平均能量加12dB,则不降低门限。此外,为了防止门限变得太高或降得太低, 还应把门限限制在GATE_MIN、GATE_MAX范围内。

2 系统实现及优化

  本设计采用QuartusII以及ModelSim进行开发(ModelSim是Mentor Graphics公司的仿真软件)。QuartusII是Altera公司的一套开发FPGA/CPLD的EDA软件,可以完成从设计输入、功能仿真、综合优化、后仿真、引脚配置、布局布线到配置芯片的一系列FPGA/CPLD的开发流程,并提供调用其他EDA工具,如ModelSim、Synplify/Synplify Pro、FPGA Complier的接口。

  本设计的输入为16位PCM编码的数字语音信号,输出是每80个数据为一帧的语音信号的检测结果,其中高电平表示语音,低电平表示静音。根据所用算法的特点,将本设计划分成五个模块:FIFO模块、高通滤波模块、平均能量模块、判决模块以及控制模块。系统结构框图如图2所示。


2.1 FIFO模块

  输入的语音信号的采样率为8kHz,如果将8kHz作为系统的时钟频率,极大地削弱了FPGA芯片的速度优势。因此系统需要两个时钟,一个是频率为8kHz的采样时钟,另一个为系统主时钟。

两个不同工作电压下的MCU之间,是怎样进行串口通电路设计其实也可以很有趣。 先说一说这个电路的用途:当两个MCU在不同的工作电压下工作(如MCU1 工作电压5V;MCU2 工作电压3.3V),那么MCU1 与MCU2之间怎样进行串口通信呢?很明显是不能将对应的TX、RX引脚直接相连的,否则可能造成较低工作电压的MCU烧毁!下面的“电平双向转换电路”就可以实现不同VDD(芯片工作电压)的MCU之间进行串口通信。 该电路的核心在于电路中的MOS场效应管(2N7002)。 它和三极管的功能很相似,可做开关使用,即可控制电路的通和

2011韩国电子展—图文现场报道2011韩国电子展于2011年10月12日至10月15日在韩国首尔国际展览中心KINTEX举行,韩国电子展览会KES是韩国规模最大、最具代表性的专业电子展览会,电子发烧友网赴韩国第一时间为大家带来KE

LED芯片封装缺陷检测方法研究此页面是否是列表页或首页?未找到合适正文内容。

大电流电感
 
在线客服