联系我们
    插件电感_大电流电感
热门搜索
点击排行
推荐电感
推荐阅读
推荐电感
推荐电感
猜猜你喜欢的
行业资讯 您所在的位置: 电感 > 行业资讯

电路板模拟地和数字地的细节处理

来源:    作者:    发布时间:2023-08-17 09:06:02    浏览量:

一、引言接地无疑是系统设计中最为棘手的问题之一。

尽管它的概念相对比较简单,实施起来却很复杂,遗憾的是,它没有一个简明扼要可以用详细步骤描述的方法来保证取得良好效果,但如果在某些细节上处理不当,可能会导致令人头痛的问题。

二、概述对于系统而言,"地"是信号的基准点。

遗憾的是,在单极性电源系统中,它还成为电源电流的回路。

接地策略应用不当,可能严重损害高精度线性系统的性能。

图1 “地”是信号的回流路径对于所有模拟设计而言,接地都是一个不容忽视的问题,而在基于PCB的电路中,适当实施接地也具有同等重要的意义。

高质量接地问题必然会影响到混合信号PCB设计的整个布局原则。

目前的信号处理系统一般需要混合信号器件,例如模数转换器(ADC)、数模转换器(DAC)和快速数字信号处理器(DSP)。

由于需要处理宽动态范围的模拟信号,因此必须使用高性能ADC和DAC。

在恶劣的数字环境内,能否保持宽动态范围和低噪声与采用良好的高速电路设计技术密切相关,包括适当的信号布线、去耦和接地。

图2 模数转换示意图过去,一般认为"高精度、低速"电路与所谓的"高速"电路有所不同。

对于ADC和DAC,采样频率一般用作区分速度标准。

不过,以下两个示例显示,实际操作中,目前大多数信号处理IC真正实现了"高速",因此必须作为此类器件来对待,才能保持高性能。

DSP、ADC和DAC均是如此。

更复杂的是,混合信号IC具有模拟和数字两种端口,因此如何使用适当的接地技术就显示更加错综复杂。

此外,某些混合信号IC具有相对较低的数字电流,而另一些具有高数字电流。

很多情况下,这两种类型的IC需要不同的处理,以实现最佳接地。

数字和模拟设计工程师倾向于从不同角度考察混合信号器件,本文旨在说明适用于大多数混合信号器件的一般接地原则,而不必了解内部电路的具体细节。

通过以上内容,显然接地问题没有一本快速手册。

遗憾的是,我们并不能提供可以保证接地成功的技术列表。

我们只能说忽视一些事情,可能会导致一些问题。

在某一个频率范围内行之有效的方法,在另一个频率范围内可能行不通。

另外还有一些相互冲突的要求。

处理接地问题的关键在于理解电流的流动方式。

三、星型接地"星型"接地的理论基础是电路中总有一个点是所有电压的参考点,称为"星型接地"点。

我们可以通过一个形象的比喻更好地加以理解—多条导线从一个共同接地点呈辐射状扩展,类似一颗星。

星型点并不一定在外表上类似一颗星—它可能是接地层上的一个点—但星型接地系统上的一个关键特性是:所有电压都是相对于接地网上的某个特定点测量的,而不是相对于一个不确定的"地"(无论我们在何处放置探头)。

图3 星型接地示意图虽然在理论上非常合理,但星型接地原理却很难在实际中实施。

举例来说,如果系统采用星型接地设计,而且绘制的所有信号路径都能使信号间的干扰最小并可尽量避免高阻抗信号或接地路径的影响,实施问题便随之而来。

在电路图中加入电源时,电源就会增加不良的接地路径,或者流入现有接地路径的电源电流相当大和/或具有高噪声,从而破坏信号传输。

为电路的不同部分单独提供电源(因而具有单独的接地回路)通常可以避免这个问题。

例如,在混合信号应用中,通常要将模拟电源和数字电源分开,同时将在星型点处相连的模拟地和数字地分开。

四、单独的模拟地和数字地事实上,数字电路具有噪声。

饱和逻辑(例如TTL和CMOS)在开关过程中会短暂地从电源吸入大电流。

但由于逻辑级的抗扰度可达数百毫伏以上,因而通常对电源去耦的要求不高。

相反,模拟电路非常容易受噪声影响—包括在电源轨和接地轨上—因此,为了防止数字噪声影响模拟性能,应该把模拟电路和数字电路分开。

这种分离涉及到接地回路和电源网络的分开,对混合信号系统而言可能比较麻烦。

图4 单独的模拟地和数字地然而,如果高精度混合信号系统要充分发挥性能,则必须具有单独的模拟地和数字地以及单独电源,这一点至关重要。

事实上,虽然有些模拟电路采用+5 V单电源供电运行,但并不意味着该电路可以与微处理器、动态RAM、电扇或其他高电流设备共用相同+5 V高噪声电源。

模拟部分必须使用此类电源以最高性能运行,而不只是保持运行。

这一差别必然要求我们对电源轨和接地接口给予高度注意。

请注意,系统中的模拟地和数字地必须在某个点相连,以便让信号都参考相同的电位。

这个星点(也称为模拟/数字公共点)要精心选择,确保数字电流不会流入系统模拟部分的地。

在电源处设置公共点通常比较便利。

许多ADC和DAC都有单独的"模拟地"(AGND)和"数字地"(DGND)引脚。

在设备数据手册上,通常建议用户在器件封装处将这些引脚连在一起。

这点似乎与要求在电源处连接模拟地和数字地的建议相冲突;如果系统具有多个转换器,这点似乎与要求在单点处连接模拟地和数字地的建议相冲突。

其实并不存在冲突。

这些引脚的"模拟地"和"数字地"标记是指引脚所连接到的转换器内部部分,而不是引脚必须连接到的系统地。

对于ADC,这两个引脚通常应该连在一起,然后连接到系统的模拟地。

由于转换器的模拟部分无法耐受数字电流经由焊线流至芯片时产生的压降,因此无法在IC封装内部将二者连接起来。

但它们可以在外部连在一起。

图1显示了ADC的接地连接这一概念。

这样的引脚接**在一定程度上降低转换器的数字噪声抗扰度,降幅等于系统数字地和模拟地之间的共模噪声量。

但是,由于数字噪声抗扰度经常在数百或数千毫伏水平,因此一般不太可能有问题。

模拟噪声抗扰度只会因转换器本身的外部数字电流流入模拟地而降低。

这些电流应该保持很小,通过确保转换器输出没有高负载,可以最大程度地减小电流。

实现这一目标的好方法是在ADC输出端使用低输入电流缓冲器,例如CMOS缓冲器-寄存器IC。

图5 数字转换器的模拟地(AGND)和数字地(DGND)引脚鹰返回到系统模拟地如果转换器的逻辑电源利用一个小电阻隔离,并且通过0.1 μF (100 nF)电容去耦到模拟地,则转换器的所有快速边沿数字电流都将通过该电容流回地,而不会出现在外部地电路中。

如果保持低阻抗模拟地,而能够充分保证模拟性能,那么外部数字地电流所产生的额外噪声基本上不会构成问题。

五、接地总结没有任何一种接地方法能始终保证最佳性能。

本文根据所考虑的特定混合信号器件特性提出了几种可能的选项。

在实施初始PC板布局时,提供尽可能多的选项会很有帮助。

PC板必须至少有一层专用于接地层!初始电路板布局应提供非重叠的模拟和数字接地层,如果需要,应在数个位置提供焊盘和过孔,以便安装背对背肖特基二极管或铁氧体磁珠。

此外,需要时可以使用跳线将模拟和数字接地层连接在一起。

可靠、灵活的针对复杂电路板的电源管理解决方案 电路板上电源的数量取决于VLSI所使用的多个电源的数量,它们与其它器件之间的通信速度需要电路板上有一套独特的电源,如使用的存储器类型。这是因为每个VLSI(ASIC/ SoC)器件需要多个电

华为Matebook 16笔记本拿到质量认证:配135W电源此前有消息称华为Matebook 16笔记本将于今年5月发布,配备16英寸3:2高分屏,搭载 AMD锐龙5000系列处理器。 根据微博 @看山的叔叔 消息,华为代号为 CREM-WFD9的笔记本电脑第二次通过了中国质量认证。 这款产品代号为“Curie”也就是居里夫人的名字,配备20V 6.75A 电源适配器,功率135W。 根据此前消息,这款笔记本早在今年2月便首先通过质量认证,但代工厂不同。 爆料者表示,华为 Matebook 16预计将搭载 R7 5800H 等标压处理器,同时配备 GTX 1650

uC/OS-II在ARM系统上的移植与实现 0 引言在开发嵌入式系统时,一般选择基于ARM 和uC/ OS - II 的嵌入式开发平台,因为ARM 微处理器具有处理速度快、超低功耗、价格低廉、应用前景广泛等优点[1 ] . 将uC/ OS -

大电流电感
 
在线客服