采用DSP、PLD和ASIC实现多速滤波器设计的比较
来源: 作者: 发布时间:2014-12-14 13:22:14 浏览量:举个简单的例子来说明一下多相分解的工作原理。在该例中滤波器系数为24,插值因子为4。由于滤波器插值因子为4,因此实际上大多数输出到滤波器的数据为零,通过执行特殊的乘法操作可以消除这些零数据的系数。例如,第一个输出数据可以单独由系数C0、C4、C8……C20确定,而第二个输出数据则由C1、C5、C9……C21等系数决定。在这种情况下每个输出只要求6次乘法运算而不是24次乘法运算,调整插值因子可以减少运算速率。对于插值因子为12的388抽头滤波器,每个输出只需33次乘法即可确定。多相插值器可以用388MIPS完成相同的运算量。
抽取结构同样也可利用类似的技术。在本例中抽取因子为4,因此4个数据点经过滤波后只剩下了1个,其实没有必要去计算被丢弃的取样点数。多相抽取器将数据分配给4个较短的多相滤波器(抽取因子为4),最后将4个滤波器的输出叠加在一起从而形成最终滤波输出。每个多相滤波器以抽取后的数据速率输出数据,从而降低了对抽取器的性能要求。
当然可以综合运用多种方法以进一步降低运算速率。例如,可以对多相结构中的每个单级滤波器执行多级滤波。
采用DSP和内核的实现方案
从实现层次看,需要采用特殊的结构(占用最小的器件资源,工作于最低的功耗等)。这种方案的选用取决于运算速度要求,对于要求几百MIPS的情形采用DSP就是很理想的方案,某些DSP器件的运算速度能达到1GOPS,采用DSP的典型设计还能做滤波以外的其它工作,在处理器执行的所有不同功能上谨慎地分配MIPS也很有必要。
许多情况下用户都会做出MIPS预算,并根据具体性能要求选择DSP。如果性能要求超过了单片DSP的处理能力,可以考虑多种应变方案,如将任务分配到多个DSP上,或采用硬件协处理器来加速运算量巨大的任务,此时,采用ASIC和PLD电感器生产器件就恰到好处。
采用专用逻辑器件的实现方案
许多半导体供应商都提供能实现插值功能的专用芯片,这些芯片包含若干用于实现滤波功能的乘法器,因此能获得比DSP器件更优异的性能。它们还能支持固定数值的系数和特定的插值或抽取因子。
ASIC和PLD方案可以结合起来形成“用户专用硬件”产品。采用这种方法后可以在一个时钟周期内计算全部127抽头的FIR滤波器(比DSP快两个数量级)。设计中要仔细考虑后续工作,如HDL仿真、综合、验证、可测性及故障覆盖率,这点在DSP设计中也一样。
对于完全并行的插值滤波器来说,将滤波器进行多相分解可以产生由较短滤波器构成的滤波器组。为了在一个时钟周期内进行一次滤波运算,多相滤波器中的每个系数必须配备一个乘法器。在每个输入时钟周期要完成两个任务:1.数据存贮到每个多相结构中;2.每个滤波器会产生N个输出。最后输出时钟会在同一时间扫描所有的各相滤波器,就如同是单一输入时钟的效果。
时钟域与静态时序分析
将设计分解开来可以得到二个时钟域,即输入时钟与输出时钟,输出时钟速率是输入时钟速率的整数倍。输出结构(一个简单的乘法器)需要以高于输入多相滤波器的数据速率工作。当进行专用硬件(如ASIC或可编程逻辑)设计时可以考虑减小时钟域的数量。当用ASIC产生扫描向量时需要另外增加时钟域,通过静态时序分析可能还需消除一些错误路径。采用可编程逻辑器件,可供选择的时钟一体成型电感信号数量是固定的,因此每个时钟域也就显得更加珍贵。
当时钟使能端作用于多相结构中的触发器时,就有可能采用输出时钟对整个结构进行时钟控制。采用时钟使能功能,多相结构只需运行于输入时钟速率(较慢的时钟信号),还可放宽这些复杂结构的时序要求。这使多相结构成为一个多循环组件,静态时序必须符合多循环规范。在ASI电感器的识别C和PLD为主的设计流程中使用的时序分析工具需要支持多循环规范。
当设计ASIC时,所需数量的乘法单元可以集成进芯片中,并且可以在最小的面积上获得所要的速度。ASIC实现方案要比DSP和PLD实现方案的灵活性低,任何改变都需要对整个系统作重新设计(既费时又费力)。
采用PLD结构的滤波方案
PLD实现方案则不同,用PLD实现滤波功能可以采用两种结构:串行与并行,这两种结构都能有效地将系数映射到查寻表格并执行乘法运算。完全并行的结构可在单个时钟周期内进行完整的滤波运算,而串行结构需要将运算分配在若干时钟周期内完成(取决于输入数据宽度),因此串行结构的吞吐量较小,但串行结
几种电子开关电路设计与原理分析电子发烧友为您提供的几种电子开关电路设计与原理分析,比较器+ RC定时+三极管开关,R1和C1组成RC定时网络,Q1和Q2组成电子开关。其工作过程是:当把开关S1置于“关”时9V电池对电容C1充电。
开关降压芯片SW(开关管脚)无信号输出,输出端电压为开关降压芯片SW(开关管脚)无信号输出,输出端电压为0?求助你这个芯片 症状说全了啊芯片是LT8610,焊接了5快板子,有一块能够正常工作,其它的都是一样的芯片和器件,焊接后不能工作,不加
一种710 MHz LTE天线的去耦合分析为了提高天线的容量和发射接收速率,LTE通信系统使用了MIMO天线。由于移动终端上空间有限,多个天线间存在较大耦合,天线的辐射效率和通信容量会降低。为了解决这一问题,从S参数的
大电流电感