联系我们
    插件电感_大电流电感
热门搜索
点击排行
推荐电感
推荐阅读
推荐电感
推荐电感
猜猜你喜欢的
行业资讯 您所在的位置: 电感 > 行业资讯

3相3级逆变器的中心对齐SVPWM实现

来源:    作者:    发布时间:2015-01-09 21:36:48    浏览量:

例如,主扇区1的初始矢量为PPP(OOO,NNN)、POP(NON)、PNO、PNN、PON、PPO(OON)、POO(ONN)。为了获得类似于2级SVPWM的六边形,把POO(ONN)作为映射矢量Vmap1=V0。在映射以后,我们可得到图5所示六边形,其与2级SVPWM的矢量图一样。在该六边形中,共有7个映射矢量,其在六边形中形成6个子扇区。

图5 主扇区1映射

表2 每个主扇区的映射矢量

3 主扇区计算简单方法

利用α- β坐标平面Vref角度,可计算出该主扇区。如图2和图3所示,每个主扇区均位于固定角度范围内。例如,第一个主扇区的角度范围为 。还可以计算第二个主扇区的角度范围,其为 。因此,第一个和第二个主扇区之间的重叠区域,会延伸到两个相邻区域。这些重叠区域增加了主扇区的计算难度。为了规定每个扇区的独占角度区域,我们可重新定义主扇区,如图6所示。

图6 主扇区新定义

利用图6所示定义,每个主扇区都有其自己的角度区域及其自己的子扇区。

鉴于图7所示3相电压波形,相应主扇区被标记在正确位置。由图7,表3总结了主扇区编号与3个相位元素之间的关系,其可帮助轻松确定主扇区。

图7 主扇区位置

表3 主扇区确定方法

4 子扇区过程

在2级SVPWM中,第1步是找出可确定停顿矢量的扇区编号。第2步是,计算每个所选矢量的停顿时间。根据第1章中3级SVPWM原则,当确定主扇区且所有矢量均映射到主扇区时,可使用与2级SVPWM相同的过程来确定子扇区,并计算每个停顿矢量的停顿时间。这种过程算法在许多文章中都有介绍,因此本文将不再讨论子扇区确定方法和停顿时间计算方法。

电感器厂家尽管我们可以通过子扇区方法找出每个矢量的停顿时间,但是每个功率开关的占空比分布比2级SVPWM要复杂得多。3级SVPWM拥有6对补偿功率开关,其意味着,当我们得到所选矢量的停顿时间时,必须计算出6个占空值。为了简化占空比计算过程,本文介绍一种有效的方法,用于轻松地计算每对功率开关的占空比。

我们同样以塑封电感主扇区1作为例子。根据图4,R相位没有N状态。除此以外,如果选择OON、ONO和OOO,用于矢量映射,则S和T相位没有P状态。就R相位而言,用1代替P状态,并用0代替O状态。就S和T相位而言,用1代替O状态,用0代替N状态。结果是,与2级SVPWM相同的矢量图。图8显示了这种操作过程。

图8 状态代替

在完成2级SVPWM过程以后,可知道3个矢量的停顿。如图8所示,Tx为100停顿时间,Ty为110停顿时间,而Tz为111和000停顿时间。因此,我们可以利用中心对齐PWM输出模式,计算出3对补偿功率开关的3个占空比(d1、d2和d3)工字电感;本例所得矢量序列为000→100→110→111→110→100→000。图9左边显示了2级SVPWM中3对补偿功率开关上级开关的状态,其被称作中心对齐SVPWM。

图9 2级逆变器电感测量中心对齐SVPWM

如果我们用P和N分别代替1和0,则我们可得到3级逆变器中心对齐SVPWM的右边部分。3级SVPWM的矢量序列为:

ONN→PNN→PON→POO→PON→PNN→ONN。

正功率开关对为Qx1和Qx3(x=R、S、T);负功率开关对为Qx4和Qx2(x = R、S、T)。我们对每对状态0和1的定义也与2级SVPWM相同。因此,对于主扇区1而言,在单开关周期内,负R相位对始终为0,对于S、T相位而言,正对始终为0。那么,仅3对功率开关必须通过不同的占空比、正R相位对和负S、T相位对控制,其相当于2级SVPWM的3对功率开关。这意味着,在主扇区1中,d1可分配给正R相位对,d2可分大功率电感贴片电感器配给负S相位对,而d3可分配给负T相位对。

前面分析结果可扩展至其它矢量。表4总结了状态代替,表5列举了每个主扇区的占空比分配情况。

表4 每个主扇区的状态代替

3相3级逆变器的中心对齐SVPWM实现摘要空间矢量脉宽调制(SVPWM)广泛用于3相逆变器控制系统。SVPWM MCU实现的最有效方法是中心对齐PWM,因为MCU中的PWM模块可轻松产生中心对齐PWM。本文将讨论SVPWM实现方法,并介绍

工频变压器的输入频率变到200HZ,变压器能否使用?各位大师,我有一款工频的变压器,还有1/3的余量,现用在输入频率200HZ的发电设备上,能否使用?
你这个问题提的让人很难回答。不知道“还有1/3的余量“是什么意思,或是你是说用 2/3

网友谈论:Coolmos的选择与优势标签:CoolMOS(14)MOS(36) 电子发烧友网整理了网友针对Coolmos的选型及优势的一些谈论,方便大家参考。Coolmos的使用是一个趋势,因为普通MOS已经不能满足电源的实际需求。 稍

大电流电感
 
在线客服